The Radiation Post

How is Radiation Measured and Detected

Radiation is colorless, odorless, tasteless, soundless and lacks any type of tangible “feeling.” As a result, it’s nearly impossible – save an acute event resulting in immediate physical damage – for individuals to know they are exposed to radiation at all. If you work in a radioactive career, your company safety culture matters.

It’s your company’s – and the radiation safety officer’s (RSO) commitment to ALARA – including adequate detection and measurement technologies that will keep you and other employees safe.

How is Radiation Measured?

Radiation is present in our environment, the earth, outer space and even in our homes. This is because radiation is a natural phenomenon. As such, humans and other living organisms can withstand small doses, over time, with zero to minimal health risks. It’s only when those radiation doses creep up into the larger limits, are at closer proximity and/or exposure occurs over a long-period of time that radiation poses a serious risk.

For this reason, nuclear plants, industries that work with radioactive materials, and individuals who work or live within close proximity to radiation, should ensure proper measurement and detection protocols are put in place. Industry-respected, high-quality radiation instruments are the only means of telling whether or not there is a potential risk from radiation (over) exposure to yourself and others.

How to measure a radiation dose rate

The first thing to note is that not radiation detectors are not created equal. Some measure contamination, some only measure specific types of radiation, and others only tell you the type of radiation the instrument detects. If you’re worried about radiation sickness or being poisoned by radiation, you need an instrument that more specifically measures radiation dose rates, so you can respond accordingly.

Geiger Counter

The Geiger Counter is the first instrument laypersons think of when they hear radiation detection or measurement device because we learned about it back in earth science. However, it’s not always the best choice. The average Geiger counter will go haywire and yield an inaccurate high reading when hyper-responds to low-energy gamma rays that comprise the majority of natural background radiation, and it will give an alarmingly low reading if you’re attempting to measure radiation from high-energy gamma rays.

The best Geiger counter for measuring radiation dose rates is one that is what we call “energy compensated.” Energy-compensated Geiger counters are designed to make up for those differences. Even so, we don’t consider these to be the most effective way of accurately measuring specific radiation dose rates.

Ion Chamber

Ion chambers, or similar pressurized versions that can measure really low radiation dose rates, are basically chambers filled with gas. The electrical properties of the enclosed gas change whenever radiation passes through the chamber. By measuring these electrical changes, we can tell how much radiation the ion chamber is exposed to. Radiation dose rates are measured in milliRoentgen per hour, or mR/hr.

How to measure radioactive contamination

While you may breathe a sigh of relief when the ion chamber indicates a low radiation dose rate, that doesn’t mean you’re off the hook. There could be radioactive contamination that needs to be addressed. This is important to note because if and whenever possible, radiation contamination should be cleaned up.

For example, after a nuclear reactor accident, distant areas may have low radioactive dose rate measurements while still reading positive for nuclear contamination. Why leave radioactive materials in and around the earth if we don’t need to?

In this case, as touched on above, Geiger counters are the perfect instrument to use. More specifically, you can use a pancake GM, a specific type of Geiger counter to measure contamination – which is measured in counts per minute, or CPM.

How to Measure Different Types of Radiation

There are four different types of radiation: alpha, beta, gamma and neutron. Since each one has different properties, each one of them is measured a bit differently.

  • Alpha radiation is measured by a GM pancake probe or a zinc sulfide scintillator
  • Beta radiation is measure using a GM pancake probe, a beta scintillator or an ion chamber
  • Gamma radiation is measured by a GM pancake probe, a GM hot dog probe, a sodium iodide scintillator or an ion chamber.
  • Neutron radiation is most commonly measured using a scintillation detector and specialized detection software.

Do you work in a radioactive career or employ others who require specialized radiation protection? Contact us here at Lancs Industries. We design and manufacture leading radiation shielding and protection products, including glove bags and sleeving, to increase the safety of workers in potentially hazardous environments. We can also design custom equipment, clothing and products.

Facebook Linkedin Stumbleupon Digg Delicious Tumblr Email

What to Do in a Nuclear Fallout or Radiological Attack

For those who don’t work in radioactive careers, or in jobs that expose them to radiation, the threat of radioactive exposure is minimal. That changes, however, in the event of a radiological attack resulting in heavy amounts of fallout or from a nuclear disaster (such as the Fukishima nuclear disaster back in 2011). In cases like these, a greater public awareness about radiation, and what to do if a radiological attack/accident occurs, reduces the amount of widespread harm.

Protect yourself from a radiological attack or nuclear accident

Here are some of the steps you can take to prepare yourself – and your family – from harmful radiation exposure.

Resist the urge to evacuate

Humans are biologically wired with a fight or flight response to a threat or widespread emergency. In the case of a nuclear attack or meltdown of some sort, however, you need to fight this urge. Unless the authorities tell you to evacuate, it’s imperative that you stay indoors.

During the immediate aftermath, radiation experts will assess the fallout and map the pattern to create an evacuation plan that limits the public’s radiation exposure as much as possible. If recommended, move to the nearest and largest safe building. If you happen to be in the thick of the plume, stay away from the doors, windows and roof or the building.

If you have children, do not go to their school or day care and pick them up unless the authorities have told you it’s safe. This understandable desire to “protect” can actually make you all very sick if it exposes you and/or family members to direct radiation.

The key is to go inside, stay inside and tune in to the news reports.

Be prepared for this and any other potential disaster

It makes sense to be prepared for any potential disaster, whether you live near a nuclear power plant or not. There’s hardly a single place in the country where people aren’t at risk for some kind of natural disaster – ranging from earthquakes and hurricanes to tornadoes or, yes, nuclear events of some kind.

Ideally, your household should be prepared for at least three days of quarantined life – not dependent on any outside sources. This includes things like:

  • Bottled water (in the case of nuclear disaster, outside water sources – water from the tap – might be contaminated so only drink or use water that is already inside the home – such as bottled water or even toilet tank water, as well as other bottled beverages or liquids).
  • Food – plan for foods that don’t require heating to consume since power in all forms might be shut off in the event of a disaster.
  • Illumination – flashlights and candles are all good to have in a convenient location. Solar lanterns are a great option as well because they can be charged via the ambient light that comes through windows.
  • Extra protection – if you do live near a nuclear power plant, it’s not a bad idea to have extra forms of radiation protection on hand – like a Tyvek suits, gloves and/or masks in case you need to evacuate in the thick of the plume or leak.

Eventually, when it’s safe to evacuate, hydration and nourishment will pay off in the form of increased energy and alertness.

Share the plan with the family

By no means do you want to create a culture of unnecessary fear in your family. On the flip side, families who are prepared will weather the storm of a radiological event better than those who are unprepared. If you have children in daycare or at school, take it upon yourself to create an emergency pack for them that is kept in the classroom, in their cubby or their desk (this might be a smart thing to address class wide if the teacher doesn’t already have something like this in place. It’s also a smart idea to establish an “emergency pack” policy at your place of work.

Using a gallon Ziploc back, you can include a picture of yourself or your family and a comforting and loving letter that can be read to your children until you are reunited. Additionally, you can include:

  • Tins of tuna with self-opening lids
  • Cans of beans with self-opening lids
  • Packages of applesauce and pudding
  • Jerky
  • Crackers
  • Nuts or trail mix
  • A plastic spoon/fork and napkins

Also, inform your children of the plan to stay put unless authorities tell them otherwise. Create a communication and reunification plan. Where will you all meet once the sheltering order is lifted? Contacting each other might not be possible, but an out-of-are grandparent or close family friend can serve as the “communication central” so everyone can call separately to check in.

Preparing yourself for a nuclear or radioactive disaster really is that simple. Begin preparing and discussing these steps with your co-workers, family and friends. Again, the idea is not to raise the fear factor or unnecessary levels of anxiety, but to get a plan in place. The more prepared we all are in the midst of any disaster, the less panic ensues and the better the overall outcomes.

Interested in learning more ways to protect yourself from the effects of harmful radiation? Visit the Lancs Industries website to view a wide range of radiation shielding and protection products.

Facebook Linkedin Stumbleupon Digg Delicious Tumblr Email

Radiation Protection Basics

What is Radiation Protection?

Radiation protection, or radiation safety, is an umbrella term encompassing the actions of using best practices when working around radioactive materials. Radiation exposure causes serious illness and/or permanent damage if people aren’t informed and/or protected from ionizing radiation. In worst case scenarios, overexposure to radiation is fatal.

The goal of radiation protection or safety is to:

  • Inform and educate those who work with or around radioactive materials
  • Shield individuals from harmful radiation exposure
  • Efficiently clean radiation spills using best practices
  • Treat contaminated individuals to protect them from further harm

Radiation hazard

Why is Radiation So Dangerous?

First, we must be clear that not all radiation is dangerous. For example, the sun is radioactive, and we receive UV radiation from its rays. While this will cause sunburn – and can eventually cause skin cancer (typically not fatal) – it isn’t ultimately considered a threat to human life. The same is true for other everyday sources of radiation such as microwaves or visible light rays. Ionizing radiation, however, is a different story.

Ionizing radiation is a type of particle or electromagnetic energy so powerful it causes atoms to lose an electron. This occurs with both gamma rays and X-rays. When humans or other living things are overexposed to ionizing radiation, the process of losing electrons negatively impacts cells by irreversibly changing their DNA.

Over time, we’ve learned quite a bit about radiation exposure limits and workplace safety policies are established accordingly. Health- or life-threatening effects of radiation can occur over the long-term, via smaller exposure amounts, or in the short-term, via larger, acute doses of radiation. Thus, radiation shielding is designed to protect humans from both types of exposure.

Radiation exposure can lead to:

  • Radiation burns
  • Radiation sickness
  • Premature aging
  • Cancer and other chronic health conditions

Because radiation can’t usually be seen, smelled or tasted, it’s easy for employees to forget they’re working in a dangerous environment. That’s why the implementation of a company-wide safety program, and maintaining a “safety always” culture is so important for those who work in a radioactive career or environment.

Radiation Protection Basics

Radiation protection is divided into three basic concepts: Time, Distance and Shielding

The consideration of these three points, and the nature of the product or work you are performing, allows radiation safety officers (RSOs) to create an appropriate safety program for your workplace.

  1. Time. You can be exposed to radiation externally or internally (typically via inhalation and/or ingestion). The longer you are exposed to radiation the greater the risk, so the first emphasis is placed on minimizing the amount of time an individual is exposed to a radioactive source.

  2. Distance. Risk is also proportional to your proximity to a radioactive source. So, the next level of emphasis is placed on putting maximum distance between humans and the source. Doubling the distance between a person’s body and the source of radiation divides their exposure by a factor of four; halving the distance between a person and a radiation source increases exposure by a factor of 4.

  3. Shielding. Certain materials, such a lead, lead composites or lead-free composites absorb radiation and prevent it from getting through to the other side of the barrier. These are called radiation shielding materials. In some cases, shielding may also serve as the distance between you and the radiation source so the type and quality of the shielding products is very important whenever you work in direct contact with a radioactive source.

For some, this might be as simple as a pair of gloves and safety glasses. In other case, shielding may require the use of a full suit, tent and/or ventilation units.Your radiation safety officer should work with management to maintain a safe working environment. This is often done by taking an ALARA approach.

What is ALARA?

ALARA stands for “As Low As Reasonably Achievable,” and should serve as a mantra for any safety program established in a radioactive workplace. The concept was originally created by the International Commission on Radiological Protection (ICRP).

Read ALARA: What Is It and What Can It Do For You, to learn more about it. Ultimately, ALARA serves as both a principle for radiation protection as well as a regulatory requirement for all radiation safety programs.

Pay Attention to Occupational Dose Limits

Monitoring exposure limits – or occupational dose limits – is part of an ALARA program and ensures radiation doses remain “as low as reasonably achievable” at all times and for all personnel. While there are legal limits regarding radiation exposure, the government maintains standards for separate occupational dose limits, which are lower than the legal maximums in order to err on the conservative side.

The Nuclear Regulatory Committee sets these doses as follows:

Whole body – 5000 millirem
Extremities – 5000 millirem
Lens of the Eye – 15,000 millirem
Fetus – 500 millirem
Members of the general public – 100 millirem

Radiation Shielding is Your Best Friend and Defense

Radiation shielding comes in many forms. The most common types are lead aprons or blankets, lead eye glasses and/or lead gloves and sleeves. If you work in a radioactive work environment, we recommend contacting a company specializing radiation shielding products to determine which products will provide the greatest level of protection for yourself and/or your employees.

While there’s no need to over-protect, no employer every wants to find out their employees are under-protected as the results can cause serious health risks. Please feel free to contact Lancs Industries to discuss your workplace so we can establish the best line of defense.

Facebook Linkedin Stumbleupon Digg Delicious Tumblr Email

Will Hospitals Admit Someone Who’s Contaminated with Radiation?

Imagine you work in a radioactive lab and one of your co-workers trips and falls with a tray full of radioactive liquids. Unfortunately, they wound up knocking their head hard on the sharp edge of a counter on their way down. So, in addition to the radioactive spill, the individual is unconscious, with a serious head laceration and their entire front is contaminated with radioactive liquid. Or, imagine a similar scenario where the individual falls as the result of a cardiac arrest.

Sometimes those who work in radioactive careers focus so much on how to clean up spills or decontaminate people, they forget that the crossover of contamination + serious injury could lead to a situation where the EMTs and/or hospital staff refuse to treat/admit the patient due to the contamination factor.

What do you do if an employee is seriously injured and contaminated

Unfortunately, we’ve heard all too many stories of those who were refused critical medical treatment because the emergency response team and/or the admitting hospital weren’t prepared for minor radioactive contamination. This situation is completely avoidable if you are prepared.

Always wear and/or utilize proper protective clothing and radiation shielding

The first step to avoiding contamination in any situation is to use best practices and ensure employees wear adequate protective clothing in combination with proper shielding equipment. When this has been addressed, all other risks are minimized significantly.

Have the Radiation Safety Officer contact local emergency response teams and the nearest admitting hospital(s)

Accidents happen despite all the best preparation and protection, so have a proactive approach with the local emergency response teams as well as the nearest admitting hospitals.

Set up a meeting between the Radiation Safety Officer and relevant personnel so an actionable plan is put in place. Unless your lab or place of business is in near a major trauma center, there’s a chance the hospital isn’t as prepared as they think for “smaller” nuclear disasters.

Ask if the emergency response teams and local hospital staff are prepared to admit a patient contaminated with radiation. This is their opportunity to create a protocol if there isn’t one, or to run through an existing protocol so they’re prepared in the event of your emergency. Also, reinforce that there is almost no scenario in most medical, industrial or research settings that would lead to contamination severe enough to post a risk to medical caregivers.

Medical professionals will appreciate this heads-up approach, and that proactive move may just save a life if you wind up needing their services. Know that you might end up being the educators if they aren’t quite sure how to handle the situation.

What to do in case of a medical emergency when a co-worker is contaminated

Keep in mind that for most “medical emergencies” the first few minutes are critical. If medical attention isn’t available within that time, the patient can suffer or a life may be lost unnecessarily. Practice and reinforcement of your company’s safety protocol is time well spent.

  1. Call 9-1-1 and be clear about the situation so emergency personnel can prepare themselves en route, rather than after they arrive.

  2. Call the hospital where the patient will be admitted, giving them clear warning as to the type of contamination it is and how they can best protect themselves while administering medical care. Remind them that while proper precautions are important, the contamination does not pose a serious threat to their employees. In the meantime, anything they can do to cover the floor of the admitting area/room with non-slip plastic will be effective. Surfaces (including lights and trays) can also be covered in plastic, as can any equipment that will come in contact with the patient.

  3. As with any medical emergency, focus should be on stabilizing the patient. The ambulance interior and medical equipment can all be decontaminated by your team or theirs after the fact. As long as emergency personnel are wearing gloves, masks, safety goggles and booties, they should remain contamination free. If there is time to cover the surfaces of the ambulance interior with clear plastic, that’s great, but not at the expense of treating the patient.

  4. If there is time and the situation permits (or warrants it) you can remove the patient’s outer garments, which should eliminate as much as 75% of the contamination. You can also wash them down with warm water and a soft sponge (again, only if time permits). Then, wrap the patient in a blanket or a Tyvek or disposable “bunny suit.”

  5. Finally, radioactive measurements should be taken in the ambulance, the ER room and areas where the patient spent time to ensure they are radiation free. If not, these areas should be decontaminated accordingly.

Fortunately, most contamination – if any – that spreads from a radioactive patient to emergency and/or medical personnel is very minimal and is easily taken care of using warm water and soap.

By taking time now to prepare for the future, your employees will be in much better and more competent hands in the rare case of a medical emergency involving radiation contamination.

Facebook Linkedin Stumbleupon Digg Delicious Tumblr Email

How do you stop a radioactive spill?

As a radiation safety officer, or a safety manager in a radioactive work environment, it’s your job to plan, plan, plan. That includes having a plan to stop – and clean up – radioactive spills. In lab, academic and testing environments, spills are the most common type radioactive “accident.”

They can range from large spills on counter tops or floors, to something as small as a leaky pipette or unwitting spray that emerges when you open a new stock vial. Some are significant, some are practically undetectable – but all require an efficient, practiced and knowledgeable response.

SWIMS your way through a radioactive spill

SWIM is a simple acronym to remember and a good place to start if you’re in the process of establishing a radiation exposure response plan, or you simply want to review and amend the current one. SWIMS has been adopted by entities around the nation – from the Navy, to universities and defense labs.

  • SStop the spill. If it’s a larger spill, you may need to stop all activity while you think and assess the situation.
  • WWarn others. This might be as simple as a verbal warning or it may also include a call to emergency response personnel
  • IIsolate the spill area. The spill area must be isolated and restricted from access or contact from anyone not involved in the response/cleanup efforts.
  • MMinimize radiation exposure. Monitor the situation carefully. Look for additional signs of contamination around the spill area and on yourself or others.
  • SStop ventilation if it will help. Stay on the scene until emergency personnel arrive if the spill is significant.

This acronym doesn’t have to be addressed in order – it should simply serves as a mantra that keeps you and others focused on the tasks that need to be done.

Stop the spill

The first step in stopping the spill is to prevent it from getting worse. If you aren’t already, it’s imperative that you wear gloves and other relevant protective clothing or shielding that protects you from skin contamination. Don’t worry about cleanup until you‘re sure the spill is completely resolved and contained. Pick up or right any spilled containers, and use absorbent material to wick up what’s spilled to prevent it from spreading.

Warn others

Others need to be warned. Of course, ‘W’ can come before or alongside ‘S’ in most situations. Alert those around you of what’s happened – especially anyone within about three feet of where the spill occurs. Depending on the nature of the spill and the environment, you may need to delegate this task to continue cessation and containment.

The Radiation Safety Officer (RSO) should be notified immediately –even for minimal spills.

Isolate the area and the spill

The last thing you want during a spill is for someone to walk through and add contamination to the list of incidents. Use physical barriers to block the area. Caution tape or rope with cones are effective, but even a table across a walkway or door will work. Barriers should be obvious obstructions so others must move them or circumvent them to get through.

You will need to leave enough room to work in – ideally this would be a spill boundary that’s at least three-feet away from the outermost drop of radioactive material. Nobody should be allowed to penetrate the spill boundary unless they’re wearing proper protective equipment. If someone does cross the spill boundary, gear or not, they should not be permitted to leave until thoroughly surveyed by the RSO.

Spills should be contained and cleaned up – working from the outside borders to the inside, or from the top of the spill to the bottom (for example, if the spill moves from the counter or a table to the floor). As you clean, any towels, rags or other cleanup materials should be isolated in a plastic bag immediately after they’re used. Anyone holding or touching the bag should be wearing protective gloves.

Minimize radiation exposure

The best way to minimize radiation exposure is to stop and think. Rushing in doesn’t help anyone and can often make the situation worse as a hurried response can lead to further contamination or a violation of your company’s well-planned safety procedures. Instead, take a moment to stop and think about what is needed to address the situation at hand:

Are respirators necessary? What clean up equipment is necessary? Do you have what you need on hand or does something need to be procured? Have the right entities been contacted? Are the spill boundaries set up effectively? By assessing the situation calmly and logically, you’ll minimize exposure to yourself and others.

Stop ventilation

If shutting down applicable ventilation systems requires getting in the way of the spill, take extra precaution – wearing the right gear and respecting before/after survey and check out protocols. Otherwise, ventilation and recirculating air systems should almost always be shut down to avoid contamination by air. Keep in mind that ventilation may include things like refrigerators, fans, open windows, venting computers, etc.

Survey the radioactive spill area when you’re done

Once the area is cleaned up, it must be surveyed. Survey the entire area, including the areas immediately adjacent to the spill boundaries to ensure radiation levels are within acceptable limits. Those who worked on the contamination cleanup should also be surveyed. If there is any doubt about what those acceptable limits are, consult the Nuclear Regulatory Commission’s Reg Guide 18.6, which serves as the industry standard.

Facebook Linkedin Stumbleupon Digg Delicious Tumblr Email

Radiation Response Plan for Skin Contamination

Have you just received the designation of Radiation Safety Officer in your company or department? Or, is your lab hot – and you realize the established safety protocols aren’t up to par? Depending on the types of radiation you’re working with, it’s essential to have a response plan for any level of radiation exposure employees may experience.

While skin contamination isn’t common, radioactivity in liquid form poses a risk, and it’s essential that you’re prepared to protect yourself, fellow colleagues and employees.

A Skin Contamination Response Plan Requires Soap, Water and Diligence

While soap and water are the simple solution to most scenarios involving liquid radioactive splatter, the hand washer must be extremely diligent about how the hands and other exposed body parts are scrubbed. Then, how do you assess how much is enough? What kind of follow up is required? Is there someone you should contact?

Good questions – and that’s why it’s important to have a specific response plan. The plan will walk you and others ,step-by-step to the other side, ensuring the contamination incident is handled safely, efficiently, and consistently.

There are three macro steps required in any decent response plan:

  1. Have a detailed procedure to follow
  2. Know how to completely de-contaminate the skin, which requires knowing when you’re done cleaning up.
  3. Determine whether any further follow-up will be required.

Create a detailed procedure

First, create a detailed procedure. It should start by determining what skin contamination means. This will be determined by the nature of your work and its environment(s). Perhaps you’ll define skin contamination after a certain exposure limit has been reached, or maybe it will be defined as the presence of any contamination above the background. This is for your company or department to determine.

The procedure will also include steps such as:

  • Contacting the radiation safety officer ASAP.
  • Perform a count rate survey at the contaminated site and document the number of CPM.
  • Move to the nearest sink available to begin cleaning the contaminated area.
  • Continue additional clean-up at and around the contamination site.
  • Contact additional or outside assistance whenever necessary. Never err on the side of waiting too long or hedging at the idea of requesting more support. When it comes to radiation contamination; it’s always better request additional assistance that you don’t need, rather than the other way around.
  • Document everything.

Know how to clean up radioactive contamination on the skin

In almost all cases, de-contaminating the skin is a very straightforward procedure, requiring nothing more than soap and water. Cleaning wipes, damp rags and sponges may also work. However, if you are working with a highly specific product or scenario, the situation may require more specialized products. If this is the case, always have those products on hand.

Decontamination should never be painful. Remember that your skin is a very tough and protective barrier. Doing anything that causes pain or discomfort – using harsh, abrasive scrubbing materials, water that is too hot, drawing blood from over-exuberant scrubbing – all of these can actually increase the chances of internal contamination through broken skin.

If the hands are contaminated, be very careful to clean around the nails and nailbeds, all around and in between the fingers – including the webbing, and around the thumbs and wrists, the creases and crevices in the palms, etc. Those are the areas most likely to remain contaminated if they are not washed thoroughly enough.

Re-count contamination levels after every few washes and/or wipes. As long as numbers continue to go down, you are doing it right. If the number of CPM levels off, it’s time to try something else because washing is no longer working.

Consider what additional, follow-up measures may be necessary

Sometimes, additional measures may be necessary. For example, certain contamination levels or contamination via certain compounds may lead to thyroid counts or urine bioassays to be on the safe side. A consultant might be called in to calculate radiation doses if skin contamination exceeds certain limits after de-contamination efforts have been exhausted. Radiation doses can probably be established in house, using online calculators like this one from the Radiation Safety Division at Duke University. If the individual has exceeded 50 rem to the skin, a regulator will need to be contacted.

Document everything

Make sure everything is documented, starting with a brief description of what happened, the instrument used for count measurements, how often they were taken, what those counts were and a brief description of the decontamination procedure. You don’t have to write a novel, but all of the pertinent details should be included in an organized, legible format. If follow-up measures are required, these will be documented as well.

While skin contamination is serious, there is no need to panic. In fact, methodology is your friend here, keeping you calm, focused and attentive.

Need assistance preventing yourself and/or your employees from radioactive skin contamination in the first place. Contact Lancs Industries and have a conversation about the radiation protection that makes the most sense for your industry or area of expertise.

Facebook Linkedin Stumbleupon Digg Delicious Tumblr Email

Protect Yourself From Radiation Exposure

Do you live or work in a place that puts you at risk for radiation exposure? The more you can do to educate yourself and take precautions, the better. Radiation exposure is not something that can be “undone.” Once your body has absorbed its maximum dose of Alpha, Beta or Gamma exposure – bad things start to happen.

Radiation sickness is nothing to scoff at; the effects are often permanent and can even cause death.By educating yourself and ensuring you’re adequately protected, you are much less likely to suffer the harmful effects of radioactive elements.


Are you exposed to radiation at work?

First, if you work at a place where radiation exposure is a threat, ask yourself if the company has a “safety first” culture.

  • Are you familiar with ALARA?
  • Is there a designated Radiation Safety Officer who leads/participates in regular safety meetings and who monitors radiation levels and ensures proper safety precautions are in place?
  • Are you equipped with certified protective clothing and/or shielding when necessary?

If you answered no to any of the above questions, speak with your fellow co-workers or a manager (if you feel comfortable doing so) and then approach company administrators to address these issues. The health and well-being of you and your fellow employees is worth it. There are a range of safety practices, protective products that can be used and worn that will keep your radiation exposure limits at minimal levels.

It might be time for you and a group of dedicated employees to empower yourselves to start a safety revolution. By creating and implementing practical safety protocols, you’ll protect yourselves and generations of employees that come after you.

If you’re concerned your career puts you at risk for unnecessary exposure, or that your company is not doing what it should to protect you, contact us here at Lancs Industries and start a conversation. We’ll speak with you about what your company makes produces, operation procedures, your potential exposure risks and the precautions and protective measures you can take to limit or avoid harmful radiation exposure.

Tips for Protecting Yourself From Harmful Radiation Exposure

At the most basic level, there are three simple guidelines used to limit exposure to radiation – time, distance and shielding.


The longer you’re exposed to radiation, the higher the dose will be. For this reason, it’s important to limit the amount of time spent in contact or close proximity to radioactive materials. The amount of time you can safely spend in close proximity to radioactive materials is called stay time. Professionals have come up with an equation to determine the maximum stay time as:

Stay Time = Exposure Limit/Dose Rate

Pay attention to both exposure limits and dose rates to calculate stay times for yourself, and be firm about limiting yourself to the calculated amount.


The closer you are to a radioactive source, the more radiation you’re exposed to. In the public realm, radioactive disasters are followed by immediate evacuation of residents and businesses up to a specifically calculated distance. For every time you double your distance from a radioactive source, you diminish exposure by ¼. On the flip side, halving the distance between you and a radioactive source increases exposure by a factor of four.

It’s important to know the type of radiation energy and activity you’re exposed to. Gamma rays, for example, travel at the speed of light. On the other side, beta particles can only travel a distance of about 10 feet, and alpha particles are limited in travel by just a few inches. Keep in mind, however, that alpha particles can be inhaled or ingested and living tissue is very susceptible to damage from this means of exposure.


Now we have arrived at the heart of the matter. Just as a bullet-proof vest slows or stops the trajectory of a bullet, radiation shielding is designed to slow or completely stop the ability for radiation energy to travel through it.

Again, each type of radioactive energy can be blocked by differing substances. So, alpha particles can typically be blocked by more than a few inches of air space (keeping in mind they can be ingested or inhaled), water, or a thin shield. Gamma rays, on the other hand, require serious radiation shielding, like lead wool blankets, protective clothing or sleeves, and so on.

Contact the experts at Lancs Industries to learn more about your personal radiation risks and to explore radiation protection in the form of clothing, shields or custom products.

Facebook Linkedin Stumbleupon Digg Delicious Tumblr Email

Airport Body Scanners and Radiation – Your Questions Answered

Walking through airport scanners, aka “advanced imaging technology,” seems like a no-brainer, right? The Transportation Security Administration (TSA) says their safe and millions of adult travelers walk through them every year- but does that actually make them safe?

The reality is that airport scanners do, indeed, expose you to radiation; and wherever there is radiation, there is a need to be cautious. Let’s face it, as our holiday post attested, there are all kinds of dangerous ways the threats of radioactive materials have been underestimated over the years -especially when it came to new products and services.

Please Note: You absolutely never have to submit yourself to any airport’s backscatter X-ray tunnels. All you have to do is say you would like to have a manual pat-down. This will delay you a few minutes or so, but can be well worth it if you are worried about the long-term health determinants of low-grade radiation exposure. The pat-down is conducted by a trained, TSA professional of your same gender, and takes only a minute or two.


Backscatter X-Ray Tunnels Explained

First, let’s talk about how the X-Ray tunnels actually work. The idea of a “whole body” tunnel scanner is to provide an image of a person’s body – sans clothing – so that any metal or potentially hidden security threats will be exposed on the TSA checker’s screen.

One of the easiest and cheapest ways to do this is to use mild X-rays that bounce off the person’s body and show anything that is attached to the body. The bulk of the machines employed in U.S. airports use low-grade backscatter radiation to reveal objects on the surface of the body. There are also tunnels that use a higher-energy X-rays to verify whether or not there are potential weapons stored inside the body.

A third option are millimeter wave scanners, which come in two forms: the first reads radioactive waves coming off the body, the second emits low-frequency radio waves to provide an image of the body. These are the least -commonly used scanners in U.S. airports and the science of their safety is still in question.

Are Airport Backscatter X-Ray Tunnels Dangerous?

Whenever your body is exposed to X-rays, it absorbs radioactive energy. The amount of energy it absorbs is expressed in sieverts (Sv). It’s always good to know your radiation limits because this can help you to determine if and when it makes sense to receive or decline a medical or dental X-ray, a particular medical treatment, a potential job or career or – even whether you may opt to forgo the airport scanner in lieu of a manual pat-down.

To quote

Transmission scanners that see into the body use higher energy X-rays than Backscatter scanner that only view the surface and as a result the dose absorbed is 10 times greater. A single scan is roughly the equivalent of one hour of background radiation at ground level, or 10 minutes at cruising altitude in an airplane. In the worst case scenario, of a person being scanned three times a day every working day throughout the year, a backscatter scanner would contribute 0,3 millisievert to their annual dose. A transmission scanner, however, would contribute 3 millisievert and exceed the tolerable limit. In practice, most passengers would not be exposed so frequently to these scanners. This may however be a concern for airline crew or people who fly very frequently.

Keep in mind, however, that while radiation exposure limits are calculated for the general population, you don’t really know whether or not you may be more susceptible than others to radioactive exposure. Also, while we know that radiation causes cancer, the exact causes of cancer in general still remain a bit of a mystery. Most health experts would agree that cancers can arise from a single cause (genetics, for example) or there may be a series of exposures or a certain tipping point caused by multiple environmental exposures that cause cancer cells to begin multiplying.

It’s worth noting that backscatter X-ray scanners are still prohibited in the European Union because the EU population wants to see further testing and evaluate the data from longer-term studies before employing them as a general rule and exposing their citizens to potentially harmful radiation.

When it comes right down to it, walking through an TSA body scanner is a personal choice. Those who haven’t experienced much radiation exposure in their lifetime, are not employed in a job that exposes them to radiation and who don’t fly very often are probably safe from harmful side effects. On the flip side, there are many doctor and healthcare professionals who opt to skip the X-ray scanner in lieu of the manual pat-down option, claiming they’d rather be safe than sorry.

In our line of work, we opt for the latter option as well. We feel exposure should be limited whenever possible.

Facebook Linkedin Stumbleupon Digg Delicious Tumblr Email

Radioactive Holiday Gifts For the Ones You Love (and hate)

Tired of buying the same ol’ holiday gifts year after year? Looking for that truly rare, one-of-a-kind present for the impossible to buy for relatives in your life? We have just the thing – radioactive elements.

We’re joking (sort of). Believe it or not, there was a time when radiation was considered good for you – and nobody understood just how serious the effects of long-term radiation exposure really were. As a result, there were plenty of radioactive items for sale in everything from housewives’ magazines, to the Sears & Roebuck catalog and even the corner drugstore.


Real Live Examples of Radioactive Household Items & Gifts

Imagine finding one of these gifts under your holiday tree or as the result of your dreidel spin.

  1. Radioactive face cream. Women the world over were excited to try a range of Tho-Radia cosmetic products, including face creams, lipstick, perfumes, and powders. Why wouldn’t they when the radioactive ingredients promised to enhance your youthful glow. Fortunately, this makeup didn’t stay on the market for very long.

  2. Doromad toothpaste. If you lived in Germany between the years 1940 and 1945, you may have been the proud owner of Doromad toothpaste. This paste contained radioactive thorium, which was marketed to make teeth glow a little brighter and whiter….before they fell out, we would imagine. The good news is thorium was added in minimal amounts. The bad news is that users ingested and absorbed low-doses of radiation as for the duration that they used the products, and we won’t even think about the radiation that was going down drains into sewers, storm drains and groundwater supplies.

  3. The Atomic Energy Lab for the kids! Of all the radioactive products that were given as holiday gifts, this one is the most bittersweet. Well-intentioned parents who gifted, atomic scientist children their very own Atomic Energy Lab had their hearts in the right place. Created during the 1950s by the same guy who brought us the infamous Erector Sets, the Gilbert U-238 Atomic Energy Laboratory introduced children to basic radioactive elements and the experiments to show them off. It even included its very own Geiger counter. Unfortunately, children and parents who purchased the lab are not eligible for Radiation Exposure Compensation.

  4. Radiation for arthritis relief and erectile dysfunction. When radioactive isotopes were first discovered, there was no lack of advertised health wonders attributed to them. One example of this is Radithor, with a subheading that read, “The modern weapon of curative science.” Well, that was certainly the truth. The radioactive water was infused with Radium-226 and 228 isotopes. Unfortunately, true believers suffered serious side effects, such as famous socialite and athlete Eben Beyers. Mr. Beyers was a big consumer of Radithor and was reported to have consumed 1400 small bottles of the stuff (before you scoff – add up the number energy drinks your fellow countrymen consume each day). After a couple of years, he became extremely ill, had to have parts of his mouth and jaw removed, and eventually died.

  5. The first luminescent watches. The glow-ability of certain radioactive elements wasn’t lost on commercial giants. Hence, in the early 1900s, certain watchmakers used a radium-based dye to paint the numbers onto the watch faces so they would glow in the dark. Again, unfortunately, without an understanding of how dangerous radiation exposure was (no ALARA awareness back then), many of the women who painted the digits fell ill, were disfigured and many eventually died because they habitually licked the brushes to smooth the bristles in between paint strokes.

So that’s the reality of life before radiation awareness. Fortunately, times have changed.

Real Radiation-Themed Holiday Gifts That Won’t Make Your Parts Fall Off

If, however, you have a person on your gift list who might like a little laugh, we do have a few radiation-themed suggestions for you.

  • Tee-Shirts and Onesies. The famed site, Cafepress, has a wide range of T-shirts, hoodies, tote bags and even onesies with radioactive symbols and clever messages. Some of them even glow in the dark, sans any threat of radiation.

  • A Glow-in-the-Dark Coaster Set. This is probably the best crowd pleaser of the bunch, and one of our personal favorites. The team at ThinkGeek created a glow-in-the-dark coaster set. Each square is modeled from the radioactive elements on the periodic table, consisting of Radium-226 (Red), Plutonium-244 (Blue), Uranium-238 (Green), and Thorium-232 (Orange).

  • Radiation Hazard Fallout Keychain. We’re also fans of this Radiation Hazard Fallout Keychain sold on Etsy. It’s handmade, using a high-definition decal, covered with a dome crystal glass, set on an antique bronze-finished housing.

Those of us here at LANCS wish you and your family a very happy, safe and radiation-free holiday season.

Facebook Linkedin Stumbleupon Digg Delicious Tumblr Email

Different Types of Radiation Shielding Materials

We’re lucky to live in a time period where:

A) We understand the dangers and risks associated with exposure to radioactive materials
B) We understand the various ways to protect ourselves from radiation
C) We have the materials knowledge and technology to craft radiation shielding products that are more workable, comfortable and versatile than ever before.

So, what is it that makes a materials “radiation proof?” While the basics of radiation materials are roughly the same, there are three different types of materials that can be used according to the application that makes the most sense for your company, the type of work you’re doing and the environment in which the work or shielding will be used.


What are Radiation Shielding Materials?

In essence, there are only three different types of materials that provide protection from radiation for both individuals and environments. Whether you’re using containment tents, protective clothing or lead blankets – these products are your most powerful defense against burns, radiation sickness, cancer and other medical conditions linked to excess radiation exposure.

Examples of work that may expose you to unhealthy levels of radiation include:

  • Diagnostic imaging (including veterinary technicians and assistants)
  • Nuclear and industrial applications
  • Radiation therapy
  • Airline pilots, co-pilots and flight engineers
  • Anesthesiologists and nurse anesthetists
  • Immigrations and customs inspectors
  • Dental technicians

Without adequate access to information, education and protection, workers in these fields are at risk. It is the employers’ responsibility to ensure workers have adequate radiation protection, typically taking the form of radiation proof barriers, vests, skirts or aprons.

3 Most Common Radiation Shielding Materials

Lead (Pb) shielding

Historically, lead shielding products have been the most common. You are probably familiar with the lead apron that is used as a shield when you visit your dentist and require dental X-rays. As one of the most dense elements on the planet, that thin apron can be surprisingly heavy!

It is this density that makes leadless-vulnerable to radiation – particularly Gamma and X-ray radiation, which are the most harmful types of radiation. Since lead is very brittle when it exists on its own, manufacturers mix it with special additives and binders to make it more flexible. In this form, lead can be molded into thinner sheets and can be used in a range of radiation shielding products.

These products come in three standard measurements, based on the thickness of the lead sheet: 0.25mm, 0.35mm and 0.5mm, with the protective qualities increasing in relationship with the thickness. Custom thicknesses are also available when you work directly with a radiation shielding products manufacturer.

Lead composite shielding

As we mentioned, lead is dense – and that makes it heavy. Sometimes, it’s simply too heavy and/or cumbersome, which can prevent certain work from being done – or can prohibit employees from taking advantage of radiation shielding on a regular basis in an effort to get their work done efficiently.Thus, the industry began experimenting with lead composite options, meaning we mix lead with other, lighter-weight metals that reduce the penetrability of radiation.

Although lighter than lead, composite shielding is still made using heavy metals and will provide adequate protection when mixed adeptly with lead. Typically, these composite shielding products include tin, rubber, PVC vinyl and other ingredients. Most manufacturers work with custom-blends to make a proprietary mixture that can be trademarked.The finished products are as much as 25% lighter than a lead equivalent, although they must be able to provide the same level of protection as an all-lead version.

Non-lead or Lead-free shielding

The third option is a completely lead-free version, which uses proprietary blends of various composite shielding materials that provide the same level of radiation protection as lead – minus the lead. Typically, these products will contain one or more heavy metals, like tin, tungsten, antimony, bismuth and/or other dense materials.

The benefit of non-lead shielding products is that they are typically lighter and more comfortable to wear, and they are also easier to recycle or add to non-hazardous disposal containers since they don’t contain lead (a toxic metal).

Each of these radiation shielding materials has its own pros and cons, depending on the type of work being done, the duration of radiation exposure, levels of exposure and so on. Your company’s radiation safety officer should be able to select the best radiation shielding product for your particular application.

Otherwise, feel free to contact us here at Lancs Industries. In addition to steering you in the right direction, we may also be able to assist with customized protection for a particular job or situation.

Facebook Linkedin Stumbleupon Digg Delicious Tumblr Email